Материалы международной научной конференции «Уфимская осенняя математическая школа» (г. Уфа, 6-9 октября 2021 г.). Том 2 / отв. редактор З.Ю. Фазуллин. - Уфа: РИЦ БашГУ, 2021. - 272 с.

Условия интегрируемости полудискретных систем уравнений

Жибер А. В.
Кузнецова М. Н.
Работа посвящена исследованию систем полудискретных уравнений $\bar{r}_{n+1,x} = \bar{h}(x,n, \bar{r}_n, \bar{r}_{n+1}, \bar{r}_{n,x})$ в рамках подхода, основанного на понятии характеристического кольца Ли. Здесь $\bar{r}_n = (r^1_n, r^2_n, \ldots, r^N_n)$, $\bar{h} = (h^1, h^2, \ldots, h^N)$, $n \in \mathbb{Z}$.

Integrability conditions for semi-discrete systems of equations

The paper is devoted to the study of systems of semi-discrete equations $\bar{r}_{n+1,x} = \bar{h}(x,n, \bar{r}_n, \bar{r}_{n+1}, \bar{r}_{n,x})$ within the framework of an approach based on the concept of a characteristic Lie ring. .